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ABSTRACT  

Ensuring security in high risk areas such as an airport is an important but complex problem. Effectively tracking 

personnel, containers, and machines is a crucial task. Moreover, security and safety require understanding the interaction 

of persons and objects. Computer vision (CV) has been a classic tool; however, variable lighting, imaging, and random 

occlusions present difficulties for real-time surveillance, resulting in erroneous object detection and trajectories. 

Determining object ID via CV at any instance of time in a crowded area is computationally prohibitive, yet the 

trajectories of personnel and objects should be known in real time. Radio Frequency Identification (RFID) can be used to 

reliably identify target objects and can even locate targets at coarse spatial resolution, while CV provides fuzzy features 

for target ID at finer resolution. Our research demonstrates benefits obtained when most objects are “cooperative” by 

being RFID tagged. Fusion provides a method to simplify the correspondence problem in 3D space. A surveillance 

system can query for unique object ID as well as tag ID information, such as target height, texture, shape and color, 

which can greatly enhance scene analysis. We extend geometry-based tracking so that intermittent information on ID 

and location can be used in determining a set of trajectories of N targets over T time steps. We show that partial-target-

information obtained through RFID can reduce computation time (by 99.9% in some cases) and also increase the 

likelihood of producing correct trajectories.  We conclude that real-time decision-making should be possible if the 

surveillance system can integrate information effectively between the sensor level and activity understanding level.  

Keywords: Tracking, stereo, RFID, trajectories, frames, fusion 

 

1. INTRODUCTION 

Tracking of multiple objects in space is a fundamental problem with wide application and a rich literature. Our research 

interest is to monitor in real time the interactions of persons and objects using fusion of CV and RFID. It is significant 

for applications such as airport security, construction site safety, analysis of social or workplace interactions, analysis of 

games, patient safety and hospital asset management, old age home monitoring systems, and assisting persons with 

disability etc. Airport security in such crowded environments is of increasing importance that demands autonomous 

protection systems. Over the last decade, surveillance goals have changed from identifying individual suspects to social 

sorting of crowds based on perceived acute risk. This necessitates performing target[s] localization, tracking and activity 

analysis in real-time. Accomplishing these tasks using CV or RFID as stand-alone modalities is still an open research 

problem.  

Many studies have focused on processing of video input to compute features used to extract separate moving 

objects
6,7,8,9

. A good survey of passive monocular methods is given by Veenman et al.
4
. Consistency of color, texture, 

shape, and motion can be used to track an object region across multiple video frames. Variable lighting, variable 2D 

projections of a 3D object, and occlusion of one object by another present difficulties. Applications that need to 

recognize what the objects are face additional uncertainty and complexity. For example, an autonomous vehicle needs to 

identify obstacles in its path using their image extent and their motion or apparent motion (see Otoom et al.
10

). McCoy et 

al.
13

 investigated use of RFID for indoor airport security while dealing with issues such as target speed, tag orientation, 

effective read distance and target entry and exit etc.   

Passive tracking algorithms using geometric constraints and naïve physics face exponential compute times, requiring use 

of heuristics. Even good tracking performance, however, cannot reliably provide object ID. In many workplaces it is 

possible for some agents and other objects to identify themselves – by special visual features (workers wearing yellow 

hats) or by radio frequency identification, or RFID (highway vehicle using E-ZPass to pay a toll), which can both 

increase reliability and decrease computational cost. Warehouse robotics systems from Litton Industries combine radio 
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communications between robots and controller, RFID on materials, and visual tracks on the floor to safely and 

efficiently control workflow
14

.  

An interesting example is the application of RFID and CV in a day-care environment (see Nakagawa et al.
2
). Parents can 

view their child’s activity via the Internet. RFID tags are placed on the play objects and on the children so that readers 

within the play space can locate and identify them. Appropriate cameras can then be selected for good views of 

particular children and/or particular objects. Software alarms can be implemented for interaction between special pairs of 

objects and summarization of an entire day’s activity can be done. There are other applications requiring similar 

functionality – elder care, studying how shoppers examine items for sale in a store, or how visitors examine art in a 

museum. 

Over past decade, fusion of RFID and CV is also being used in indoor mobile and industrial robotics to support tasks 

such as autonomous recognition, localization and tracking. RFID alone has also been researched widely in this quarter.  

Passive stereo vision can locate detected objects in a 3D volume
 
provided the image of the same object can be identified 

in two or more cameras
3
. An RFID reader can be used to ID an object observed in some 2D image, thus aiding stereo; or, 

a network of RFID readers can provide coarse 3D location without cameras. Thus RFID can help with object localization 

in multiple ways. RFID technology also enables smart objects to communicate information about themselves not 

available to optical sensors; for example object weight, container content, etc. A tagged rigid object can even help 

provide an optical observer with a network downloaded CAD model of itself to be used for pose computation by the 

observer. This was done by Hontani et al.
21

, who also used visual tags on objects as a starting point in matching an 

observed image of the object to a projection of the 3D CAD model. Chae et al.
15 

using fusion of RFID and CV proposed 

a global to fine localization algorithm for a mobile robot in an indoor environment. In a work space of 6.2 x 7.8 meters 

they reported a mean localization error of 0.23 meters.  Another object localization scheme in a home environment using 

ceiling cameras is also presented
16

. Authors claim that use of RFID increased recognition accuracy by 34.5% and 

reduced computation time by half. Lin et al.
17

, reported fusion aided topological map-based navigation for mobile robot 

localization. Also the problem of dynamic obstacle recognition in mobile autonomous platforms is addressed
 
by using 

fused information
18

. Limitations in mobile robots such as dead reckoning [in case of robot kidnapping] or wheel slippage 

are also addressable using fusion. 

RFID provides indirect access to location information by using various localization schemes. Detail of these schemes are 

provided by Sanpechuda et al.
19 

and Zhou et al.
20

 and  RFID localization accuracies are compared
19

. They range from 

0.016 meters and 0.026 meters to 18 meters. Within a controlled environment these techniques come with their 

drawbacks of high cost, large computation and setup time. Each RFID infrastructure and localization approach comes 

with its strengths and weaknesses. Combination of approaches can supplement the shortcomings of each other. Linearly 

scaling our stereo localization lab results present residual error of 0.7 meters over a volume of 68 x 81 x 61 meters. We 

have deduced that using fusion 3D location precision of about 0.5 meters over 50 meters should not be difficult to 

achieve.  

In contrast to some other work, we assume in this paper that agents are mostly known and cooperative. We do not 

assume a controlled indoor environment, but do assume that a survey of the terrain exists including benchmark locations 

and that most agents have active RFID tags as well as distinctive clothing, which will often simplify object recognition. 

This partial control is needed since tracking outdoors presents difficulties with varying lighting, rain, smoke, dust, and 

noise, and occasional unexpected agents or objects. Moreover, real-time response is needed for safety.  

In the sections that follow, we show that recognition of some objects during some time intervals can greatly speed up and 

make more reliable the organization of time frame information into the tracks of separate objects. Section 2 discusses our 

concepts and notation: note that these are presented in general terms and are not specific to a particular application. 

Section 3 describes the experiments we used to ascertain the benefit of some object ID information in tracking multiple 

objects. Section 4 discusses the experimental results in terms of our original objectives. Overall conclusions are given in 

Section 5, where we conclude that indeed partial object recognition from RFID or controlled CV can reduce both the 

computation time and uncertainty in multiple object tracking and thus enhance safety monitoring.  

 

2. MODEL OF THE PROBLEM AND PROPOSED SOLUTION 

In order to study the problem and to provide a solution that is independent of a specific application, we abstract the 

problem as follows.  
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Consider a database view with records <x, y, z, t, L>, each recording that an object with label (name) L is at location 

(x,y,z) at time t. This database is to be built from observations from RFID readers and/or a sensor network infrastructure 

together with networked stereo vision sensors. Higher level motion analysis will use this data and be triggered by 

daemons that monitor conditions in the data – e.g. nearness of objects of class C1 and class C2. Higher level activity 

analysis is thus based on the real-time object track data. Without loss of generality, we continue our discussion using the 

site safety application. 

The site-safety system (S-3) needs to identify and locate all significant objects in the workspace within a few frames k of 

real time observation. S-3 may know L = f(<x,y,z,t>) from sensor subsystems that use RFID or visual features. When 

such information is unavailable, the system can use “tracking” to determine L = f (<x,y,z,t>) using prior records {<x, y, 

z, t-k>}, or perhaps even forward records {<x, y, z, t+k>}.   

Tracking, which is the main concern of this paper, is a lower level of motion understanding that uses naïve physics to 

aggregate observations of N objects moving over T time frames. Heuristics from naïve physics enable aggregation of 

individual observations into a sequence or tracks, one for each moving object. 

a. An object n must be at one and only one place at time t. 

b. Location <x,y,z> can accommodate at most one object at time t. 

c. Object n is likely to have consistent form and visual features. 

d. Observations of object n must be consistent with its identity, if known. 

e. The motion of object n is likely to have smooth direction. 

f. The motion of object n is likely to have smooth velocity [makes problem more complex]. 

g. Constraints e and f are likely to be violated only when object n is in close proximity to another object m. 

h. Known objects are likely to move in a known terrain in predictable ways. 

i. Some objects are known at some locations and time instants. 

j. Objects do not enter or exit the workspace [our assumption] 

k. Noise may add in input trajectory points during stereo calculation.  

These constraints are an extension of those used by Sethi and Jain
1 
and Veenman et al.

4 
and, unfortunately, none are hard 

constraints. For example, it may be that constraint b) is violated as one object “consumes” another. Perhaps a driver 

enters a vehicle – which S-3 should prevent!  

Our goal is to create a smart tracking algorithm based on the heuristics above, which will provide the means for safer 

activities and more efficient site management. Input to the tracker is a set of T vectors of information for each time frame 

t=1,2,3,…T. Each of these “frame vectors” contains N tuples <x,y,z, L>, where label L may identify a known object 

(L=1,2, …,q or N) or it may be unknown (L=0). The purpose of the algorithm is to assign (discover) labels L = 1,2,3 …q 

or N, to each position tuple at each time t.  

Our algorithm is motivated by the Sethi-Jain
1 

and Veenman et al.
4 

algorithms. It can work in either 3D or 2D and 

includes more information on some objects at some time instants [as is available from the RFID or vision sensors]. If a 

2D algorithm is used, the constraint that two objects cannot be in the same location at the same time should be relaxed 

since it may just be that one object is occluding the other at some instant. The general algorithm will have different 

specializations depending on the application and how much sensor information and object constraints are available. For 

example, in the S-3 system, our cameras are calibrated to a surveyed 3D terrain, so if an image object is known, then an 

approximate 3D object location can be computed using the image from a single calibrated camera (we can just intersect a 

camera ray, or cone, with a bounding sphere in the 3D space). For the work reported here, we extract away such 

application detail and replace it by probabilities of knowing object ID over various periods of time. The algorithm 

described in Section 3.5 works along a forward path and does not have a greedy exchange loop as used by Sethi-Jain. 

 

3. EXPERIMENTS 

To study the value of fused sensor information in tracking multiple objects, we have generated many sets of ground truth 

data. The first type of data is extracted from a lab bench using stereo vision. The second type is generated artificially 

using mathematical curves. The tracking algorithm is then applied to the observations to segment them into separate 

object trajectories; the automatically derived trajectories are then compared to the ground truth trajectories to assess 

performance. Since it is impossible for us to gather the number of cases needed using real data, RFID is simulated -- in 
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extracting trajectories, object location and ID are sometimes randomly provided to the tracking algorithm for some of the 

observations. 

3.1 Generating real trajectories 

To generate “real trajectories”, we use 3D stereo. A colored sphere on a stick is moved by hand along a trajectory within 

a wireframe cube. (The cube is used for calibrating the cameras).  The trajectory of the sphere yields T records 

<x,y,z,t,L> for object track L at times 1,2, …, T. The experimenter then repeats using the stereo system to generate more 

trajectories until there are N of them, one for each object moving in the workspace: L = 1,2,3 … N. Each of these N 

sequences is an “object track”. If we have N object tracks, then there are 2N subsets of these to choose for study. We have 

generated multiple tracks by varying the path and velocity through the workspace and also taking care to create some 

near collisions. Figure 1 shows a set of a few ground truth trajectories generated using our stereo rig.  

 

 

Figure 1. Example of ground truth trajectories 

 

3.2 Generating mathematical trajectories  

We created a data set generator that can randomly create smooth object tracks with various speeds and densities without 

collision. We generate N smooth paths for T time frames each in 3D space using a single helix, which is randomly spread 

out for a selected number of time frames using pseudorandom values as shown in Figure 2. The circular helix of radius a 

and pitch 2πb in 3D space is parameterized with Cartesian coordinates as follows: 

 
( ) cos( )

( ) sin( )

( )

x t a t

y t a t

z t bt







 

 
To meet the constraints in Section 2, the generated data has the following parameters by default: 

 

a. Object tracks N=10. 

b. Time frames T =11.  

c. Smooth velocity vectors. 

d. Unique trajectory directions. 

e. No chance of collision.  

f. Randomly spread out trajectories in a 3D space of 1 m
3
. 
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Figure 2. Generated trajectories with T=11 and N=7 

 

3.3 Special cases 

Special cases are revealing of algorithm behavior. Consider the case where two persons walk toward each other, 

exchange brief cases, and then backtrack to their original positions. Due to smoothness constraints, the geometric data 

will produce incorrect tracks with the persons continuing with their briefcases to different final positions. However, 

reliable location and ID of either person using either RFID or CV enables the correct interpretations to be extracted. This 

case is simulated by generating two ground truth trajectories (N=2 for T = 70 time frames) using the stereo rig. The 

point of intersection occurs at frame t = 43. The mean velocity of both the object tracks is kept the same.  Using the 

smoothness criteria alone with no labeling information produced wrong trajectories as shown in Figure 3(a). However, 

once ID labels with location information are provided near the intersection, the tracking algorithm interprets correct 

object tracks as shown in Figure 3(b). To avoid ambiguities in the vicinity of collision points, some localization and 

object ID information is necessary outside the area of collision. Additional confounding factors will be considered in 

future work. 

 

      

(a)                                                                                                      (b) 

Figure 3. (a) Wrong interpretation of trajectories with CV alone (b) Correct interpretation of trajectories with CV & RFID fusion 
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3.4 No object information versus some object information  

Other crucial cases where sensors provide some location and ID information demonstrate how such information 

significantly reduces computation time. We tested tracking performance of the algorithm by generating ground truth 

trajectories in various configurations with the same mean velocities. One case amongst them had N=3 and T=100 time 

frames. The object labels were provided randomly at 15 time frames. This reduced execution time by 25%. Results of 

many such experiments varying the amount of partial location and ID information are discussed in the next section. 

3.5 Algorithm description 

The algorithm takes as input N observations of 3D points over T time instants, thus NT tuples total grouped into T time 

frames. It extracts a smoothest set of paths through these points, observed in frames 1 to T; all tuples now grouped into N 

tracks. The object ID and location provide labeling information with the 3D points when available i.e L = 1,2,3,……,N. 

The number of such “tagged points” must be less than or equal to T for any of the objects n. For object track n, the 

trajectory consists of 3D points at each time frame t=1,2,3, ………,T.  The trajectory with label L is represented as: 

1 2[ , ,........., ]L n n nTC P P P ;  
, , , , ,n tP x y z t L 

 
As in Sethi-Jain, the path difference between two consecutive 3D points is defined as:   

, , ,n t n i n jD P P  ; i ≠ j ϵ t 

Smoothness at a current point Pn,t is calculated using the previous point Pn,t-1 and future point Pn,t+1. Dn,t-1 is the path 

difference between the current and previous point and Dn,t+1 is the path difference between current and future point. 

Smoothness value Sn,t of a 3D point is then defined as follows:  

, 1 , 1, 1 , 1
,

, 1 , 1 , 1 , 1

2 ..
(1 )

| || | | || |
n t n tn t n t

n t
n t n t n t n t

D DD D
S w w

D D D D

   
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   
         

  

 

To yield ,0 1n tS   a weight factor w is used such that 0 1w  . The initial points of N object tracks are assigned 

arbitrarily. The total sum of smoothness over T time frames for an object track n with assigned label L is then given as: 

1

,
2

TL

Total n t
t

S S





 
 

For efficient implementation, the algorithm uses a block set concept. A real time algorithm must make decisions within, 

say, a 5
th

 of a second, or 6 video frames. This limits the amount of look ahead that can be used. A block set denoted by B 

is defined as a group of N-tuples <x,y,z,L> frame vectors for a fixed length of time frames m. The size of B is then N  m. 

(In some simulations, we assume that the object ID and location are unknown [or known] for the entire group of m 

frames. From RFID properties, it is reasonable to assume that object IDs and their respective locations persist or are 

absent for multiple frames.) 

Step by step implementation of the algorithm is as follows:  

a. Input N observations of 3D points over T time instants. 

b. For all N object tracks, assign labels n =1,2,3,……,N  arbitrarily to frame vector at t=1. 

c. Using nearest neighbor assignments generate CN trajectories for t=2,3,……,T time frames. Point Pn,t in frame vector 

is assigned once to trajectory n in one time instance and cannot be reassigned elsewhere. 

d. Consider m time frames at a time and loop over T time frames with increment of m-1, where, m =3,4, or 6. This will 

form k time frame blocks. Each time frame block with m time frames and N assigned trajectories can now be 

represented as Bk i.e frame vector block set. 

e. Compute all possible |U| combinations of the elements of block set Bk. |U| is r  m.  r is the product of the number of 

elements of N trajectories in block set Bk. Label L may identify a known object (L=1,2, …,q or N) or it may be 

unknown (L=0). Availability of partial label information will reduce number of possible combinations. 

f. Calculate smoothness at every instance in m time frames for r combinations.  

g. Calculate total smoothness S
r

total over m time frames for each combination of r. 

h. Sort end total smoothness for each combination in descending order. 
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i. While indexing, choose highest total smoothness of N pairs with combinations having different elements in each 

frame vector in an instance. 

j. Exchange points and assign 
k

Nc   smooth trajectories in Bk as a subset of final smoothed trajectories CN. 

k. Return to step d  and increment k. End loop until last positive integer value of k. 

l. Correlate similar end points of 
k

Nc smoothed trajectories in Bk with similar initial points of
1k

Nc 
smoothed trajectories 

in Bk+1. Based on this similarity measure, rearrange the order/label of 
1k

Nc 
smoothed trajectories.  

m. Combine similar label subset trajectories from all frame blocks and generate final smoothed trajectories CN. 

 

4. DISCUSSION OF RESULTS 

The tracking accuracy of the algorithm is assessed by a “track error” criteria. Track error is defined as the fraction of 

wrong trajectory point assignments. Objects do not enter or exit; therefore a wrong assignment between points Pj,t and 

Pk,t (where j≠k ) are considered as one error. The final track error is then averaged over the number of simulation runs. 

Alternatively, track error can be more fairly defined in terms of point sensing tolerance; an object label assigned to a 

sensed point is considered correct if the sensed point is within measurement tolerance of the ground truth sensed point. 

 
To show the performance of the algorithm we demonstrate step by step results of an example. The input data is displayed 

in Figure 4(a) and consists of a sequence of 6 time frames with 3 trajectories having 3D data at each point. Each point of 

the trajectories is symbolized by ■, ● or ►. For better visualization the z dimension of all the input data is fixed. Figure 

4(b) shows the trajectory assignments after nearest neighbor linking. In the next step the exchange candidates are then 

decided using total smoothness. For this example a frame vector block set Bk of length m=6 is used. Figure 4(c) shows 

the smoothed trajectories with ■ as label 1, ● as label 2 and ► as label 3. The algorithm took only 0.102 seconds with 

zero track error. 

 

         
                                  (a)                                                                    (b)                                                                    (c) 

 Figure 4. (a) Input data (b) Nearest neighbor assignment (c) Smoothed trajectories 

 

Table 1 shows the behavior of the algorithm in terms of track error performance. The simulations were done using 

MATLAB
®

2009 on Core i5 M580 2.67 GHz platform. The experiments were conducted while choosing randomly three 

real time 3D trajectories acquired from the stereo system. The simulations were run 20 times with different frame vector 

block set length m. Different values of time frames T were used. The outputs are then averaged to generate the results. 

The results were also compared to the ground truth. It is clear from Table 1 that varying m and density of points over 

time affects the track error performance. Since the stereo system readings generate an error of up to 10mm, this error 

tolerance can be used in comparison to ground truth in determining track error. The last column of Table 1 shows the 

results with error tolerance applied while using m=6. Increasing m decreases the error, however, the number of possible 

combinations also increases so it affects computation time. These combinations can be reduced if we have partial 

knowledge of the trajectory points. To elaborate, Table 2 shows the possible combinations space with computation time 
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at points of interest. The experiment was conducted using N=5, 6 and 10 object tracks and T=60 time frames with 

different probabilities of partial ID and location availability. The algorithm is run with m=4. Partial knowledge is 

assumed to be randomly available for 0.07 sec per frame set over entire length of object tracks. This is justified in real 

time with m=4 i.e. RFID feed once present stays for at least 0.07sec (4/60). Therefore, while tracking 10 objects the 

combinations space is decreased effectively up to 99.9% with the presence of location and ID feed. The computation 

time is also reduced up to 99.9% and therefore allows the algorithm to be executable in real time. It is also seen that the 

effect of partial information availability plays a vital role as the number of object tracks N increases. Also object location 

and ID info increase the accuracy of calculated trajectories.  

 

Table 1. Track error performance with different points density and block length m. 

            m=3 m=4 m=5 m=6 
m=6  

w/ error tolerance 

T=10+ 0.121 0.095 0.043 0.027 0.0 

T=20+ 0.196 0.096 0.054 0.042 0.004 

T=30+ 0.239 0.103 0.067 0.058 0.021 

T=40+ 0.251 0.134 0.083 0.066 0.023 

T=50+ 0.262 0.159 0.091 0.071 0.036 

T=60+ 0.266 0.167 0.098 0.075 0.038 

   

Table 2. Possible combination space with different N and various probabilities of object info availability. 

 

 

 

 

 

 

 

 

5. CONCLUSIONS 

We provide a method to address the trajectory points correspondence problem in 3D space when partial object ID and 

location information is available. Our primary purpose was to analyze how partial object track information, which could 

be provided by RFID and network technologies, would make tracking more accurate and efficient. Our parameterization 

focused on airport security. The tracking algorithm was originally motivated by Sethi-Jain, though its working domain is 

in 3D and it does not use a greedy exchange step. Tracking algorithms sometimes lose correct object tracks at ambiguous 

intersecting points of trajectories. Providing partial information, such as object ID and location by RFID in such gray 

areas, helps the system to interpret correct trajectories. With such supplemental detail, algorithm exponential growth in 

computation with increasing N is also greatly decreased. While dealing with 10 object tracks for 60 time frames and 

having localization and ID randomly available 80% of the time across all the input object tracks reduces the search size 

by about 99.9%. This in turn reduces the execution time from 25 seconds to only 0.73 seconds. This reduction in time 

allows real-time implementation of the algorithm and improves on previously reported methods.  

The algorithm currently doesn’t allow object entry and exit and variable velocity at this time. These along with target to 

background and target to target occlusions are factors that we will incorporate in future work. Moreover, we need to 

improve the algorithm so that it can track N=50 or more objects in real time. 

The results we have shown apply to tracking in either 3D space or in a 2D image of that space. Using stereo in order to 

compute the 3D coordinates of objects implies that the correspondence problem has been solved, whereas other studies 

have used monocular tracking in order to assign these correspondences. Motion is just one feature that can be used in 

Probability that 

observations have 

location and ID over 

T time frames 

Number of object tracks N with 

partial info 

5 6 10 

0% 
9375 

*3.9 

19440 

 

150000 

*25.519 

26.7% 2965 6248 46185 

53.3% 663 1240 7832 

80% 
32 80 582 

*0.73 

*computation time in seconds 
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point matching. When unique features are available, they aid in stereo matching as well as in tracking over time. 

Application information also helps – we know the height of persons, the terrain on which they walk, their approximate 

speed, and occasionally their IDs from RFID. Sensor network technology is improving at a fast pace and we may even 

be able to use instantaneous object acceleration, temperatures, electrical field sensing, etc. Such information can be used 

at both the level of local object interaction and the level of overall site activity.  Real-time decision-making should be 

possible if the overall system can integrate information effectively between the sensor level and activity understanding 

level. We have limited this study to examine the effect of partial object information on the performance of tracking. 

Integration into a practical system is left for future work. 
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